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Abstract

This work proposes and analyzes a new class of numerical integrators for computing low-
rank approximations to solutions of matrix differential equation. We combine an explicit
Runge-Kutta method with repeated randomized low-rank approximation to keep the rank
of the stages limited. The so-called generalized Nyström method is particularly well suited
for this purpose; it builds low-rank approximations from random sketches of the discretized
dynamics. In contrast, all existing dynamical low-rank approximation methods are deter-
ministic and usually perform tangent space projections to limit rank growth. Using such
tangential projections can result in larger error compared to approximating the dynamics
directly. Moreover, sketching allows for increased flexibility and efficiency by choosing struc-
tured random matrices adapted to the structure of the matrix differential equation. Under
suitable assumptions, we establish moment and tail bounds on the error of our randomized
low-rank Runge-Kutta methods. When combining the classical Runge-Kutta method with
generalized Nyström, we obtain a method called Rand RK4, which exhibits fourth-order
convergence numerically – up to the low-rank approximation error. For a modified variant
of Rand RK4, we also establish fourth-order convergence theoretically. Numerical experi-
ments for a range of examples from the literature demonstrate that randomized low-rank
Runge-Kutta methods compare favorably with two popular dynamical low-rank approxima-
tion methods, in terms of robustness and speed of convergence.

1 Introduction

In this work, we aim at approximating the solution A(t) to large-scale matrix differential equa-
tions of the form

Ȧ(t) = F (A(t)), A(0) = A0 ∈ R
m×n. (1)

In many situations of practical interest, an autonomous ordinary differential equation can be
naturally viewed as such a matrix differential equation. Examples include applications in
physics [13, 22], uncertainty quantification [2], and machine learning [21]. For large m, n,
the solution of (1) becomes expensive; in fact, it may not even be possible to store the en-
tire matrix A(t) explicitly. To circumvent this limitation, model order reduction techniques
can be employed. An increasingly popular approach is based on exploiting (approximate) low-
rank structure of A(t), which arises, for example, from smoothness properties of the underlying
physical system. In particular, dynamical low-rank approximation [15] approximates A(t) by
evolving matrices Y (t) on the manifold Mr of rank-r matrices. As only the rank-r factors of
Y (t) need to be stored, this already reduces memory requirements significantly when r ≪ m,n.
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By the Dirac-Frenkel variational principle, the matrix Y (t) is obtained by solving the differential
equation

Ẏ (t) = Pr(Y (t))F (Y (t)), Y (0) = Y0 ∈ Mr, (2)

where Pr(Y (t)) denotes the orthogonal projection onto TY (t)Mr, the tangent space of Mr at
Y (t). To also achieve a reduction of computational cost, one needs to exploit the low-rank
structure of Y (t) when integrating (2). As shown in [15], this can be achieved by rewriting (2)
as a system of differential equations for the rank-r factors of Y . However, directly integrating
this system with standard explicit time integration methods often leads to poor approximation
results, unless (very) small time step sizes are used. This is caused by the additional stiffness
introduced by small singular values of Y (t). To address this issue, special integrators have been
proposed that are robust to the presence of small singular values and allow for much larger step
sizes. These methods include the projected splitting integrator [19], projection methods [14, 9]
as well as Basis Update & Galerkin (BUG) integrators [6, 7, 8]. Under the assumption

‖F (Y )− Pr(Y )F (Y )‖F ≤ ǫ̃, for all Y ∈ Mr ∩ {suitable neighbourhood of A(t)} (3)

all these methods exhibit at least first-order convergence up to O(ǫ̃), both theoretically and
numerically. The mid-point BUG [6], a variant of the parallel integrator [18], and the projected
Runge–Kutta methods [14] are the only provable second-order integrators up to O(ǫ̃). Projected
Runge–Kutta methods can also achieve higher order.

Assumption (3), which says that F (Y ) is nearly contained in the tangent space, is arguably
a strong assumption. For small ǫ̃ > 0 it implies, at least for short times, that A(t) can be well
approximated by a rank-r matrix, but the reverse is not true. In particular, it is possible that
A(t) can be well approximated by a rank-r matrix even if (3) is not satisified with small ǫ̃.
According to [14], this can occur, for instance, when the manifold Mr close to A(t) has tiny,
high-frequency wiggles, or when the range and co-range of Y are contained in the orthogonal
complement of the range and co-range of F (Y ), respectively [1]. Concrete examples are given
in Section 4. When Assumption (3) is not satisifed with small ǫ̃, the use of tangent space
projections in numerical methods bears the danger of introducing unacceptably high errors.

In this work, we develop low-rank time integration methods for (1) that do not rely on (3)
but only require A(t) to admit accurate low-rank approximations. Our approach is based on the
notion of projected integrators [11, Ch. IV.4], which first perform a standard time integration
step and then project back to the manifold. For the manifold Mr, the efficiency of projected
integrators is impaired by the occurrence of high-rank matrices, e.g., during the intermediate
stages of a Runge-Kutta method. In [14], this issue is addressed by repeatedly applying tangent
space projection, which limits the rank to 2r at the expense of having to impose (3).

In this work, we take a novel approach to avoid the high ranks encountered by projected
integrators. Our approach is based on performing randomized low-rank approximation, which
uses random sketches instead of tangent space projections. For a constant matrix B, such
randomized approaches have been studied intensively during the last 1-2 decades, including
the popular randomized SVD [12] and the (generalized) Nyström approximation [20, 24]. The
generalized Nyström approximation utilizes two sketches BΩ and ΨTB to approximately capture
the range and co-range of B, where Ω and Ψ are random matrices with the number of columns
chosen to be slightly larger than r.

To the best of our knowledge, this is the first work that proposes and analyzes randomized
low-rank approximation methods for time integration. The randomized low-rank Runge-Kutta
(RK) methods proposed in this work combine explicit RK methods with randomized low-rank
approximation. Our analysis applies to any randomized low-rank approximation satisfying the
moment assumptions defined in Section 2.3, but for simplicity we will restrict our algorith-
mic considerations to the generalized Nyström approximation. Assuming that the dynamics
generated by F preserve rank-r matrices approximately, we derive a probabilistic result that
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establishes a convergence order (up to the level of rank-r approximation error) based on the
so-called stage order of the underlying RK method. This matches the order established in [14]
for projected RK methods. However, unlike the results in [14], our numerical experiments in-
dicate that randomized low-rank RK methods actually achieve the usual convergence order of
the RK method, which can be significantly higher. For the randomized low-rank RK method
based on RK 4, we also establish order 4 theoretically when allowing for modest intermediate
rank increases in the stages. This compares favorably to order 2 implied by the techniques from
in [14].

The remainder of the paper is organized as follows. In Section 2, after providing some
preliminaries, we propose and analyze an idealized projection method, which assumes that the
exact flow of (1) is given. We show that applying randomized low-rank approximation causes,
with high probability, little to no harm to time integration. In Section 3, we propose a practical
method that uses an RK method to approximate the exact flow and provide error analysis based
on the stage order. Furthermore, we prove that if we allow rank increase in the intermediate
stages then the classical RK method combined with randomized low-rank approximation can
still achieve convergence order 4, up to the level of the low-rank approximation error. Finally,
in Section 4, we provide a range of numerical experiments that confirm the theoretical results
and demonstrate the robust convergence of randomized RK methods.

2 Preliminaries and an idealized randomized projection method

In this section, we provide preliminaries on (randomized) low-rank approximation and introduce
an idealized randomized projection method that allows one to study the impact of randomization
in an isolated fashion. In the following, ‖·‖F denotes the Frobenius norm of a (constant) matrix

and ‖Y ‖Lq = (E[‖Y ‖qF ])
1

q denotes the Lq norm, for some q ≥ 1, of a random matrix Y .

2.1 Assumptions

Our analysis will be based on the following three assumptions on F . The first two assumptions
are the same as in [6, 14, 18], while the third one is a modification of the usual low-rank
approximability assumption in dynamical low-rank approximation.

Assumption 1. We assume that F is Lipschitz continuous, that is, there is a Lipschitz
constant L > 0 such that

‖F (X) − F (Y )‖F ≤ L‖X − Y ‖F for all X,Y ∈ R
m×n. (4)

By the Picard-Lindelöf theorem, this implies that the solution of (1) exists and it is unique for
some finite time interval.

Assumption 2. Let Φt
F denote the exact flow of F , that is, given the solution A(t) of (1),

we have that A(t) = Φt
F (A0). For a method of order τ , we assume that the first τ derivatives

dj+1

dtj+1
Φt
F (Y ), j = 0, 1, . . . , τ, (5)

have uniformly bounded norm for all Y ∈ R
m×n. This assumption is needed when, e.g., per-

forming local error analysis of higher-order methods [10, Chapter II.1].
Assumption 3. To ensure low-rank approximability, we assume for every h ≤ h0 that

‖Φh
F (Y )− [[Φh

F (Y )]]r‖F ≤ CMhǫ for all Y ∈ Mr, (6)

where CM is a constant that depends on L and h0 only. Here and in the following, we use [[·]]r
to denote a best rank-r approximation of a matrix. Assumption (6) replaces the assumption
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(3), usually made in the analysis of dynamical low-rank approximation [13, 14]; see Section 2.2
below for a more detailed discussion.

In this paper, we assume that (4), (5) and (6) hold globally, because this greatly simplifies
the analysis and the results. As in (3), it is common to impose such assumptions only in a
neighbourhood of the exact solution A(t). When using randomized techniques, there is always
a tiny but non-zero probability that the approximation leaves any neighborhood. In Remark 6,
we discuss how our analsyis can be modified to account for this effect, resulting in (slightly)
weaker results.

2.2 Low-rank approximability

In this section, we discuss the relation between the assumption (3) on the tangent space projec-
tion and the low-rank assumption (6).

First of all, (3) implies (6). To see this, suppose that F satisfies (3). Then, by [14, Lemma
1], there exists h0 > 0 such that

‖Φh
F (Y )− Φh

PrF (Y )‖F ≤ ǫ̃

∫ h

0
eLs ds ≤ eLhhǫ̃, ∀ 0 ≤ h ≤ h0.

Because of Φh
PrF

(Y ) ∈ Mr, this implies

‖Φh
F (Y )− [[Φh

F (Y )]]r‖F ≤ ‖Φh
F (Y )− Φh

PrF (Y )‖F ≤ eLhhǫ̃.

Hence, (6) is satisfied with CM = eLh0 and ǫ = ǫ̃.
Assumption (6) does not necessarily imply (3), that is, the existence of a good low-rank

approximation does not require the tangent space projection error to be small. In other words,
Assumption (6) is weaker. This is demonstrated by the following example.

Example 1. Consider the rank-2 approximation of the differential equation

Ẏ (t) = F (Y (t)) =





0 0 0
0 10 0
0 0 −10



Y (t) +





0 0 0
0 10−5e−1 0
0 0 0



 , Y (0) =





1 0 0
0 0 0
0 0 10−6e



 .

We have that

Φh
F (Y ) =





1 0 0
0 10−6(e10h−1 − e−1) 0
0 0 10−6e1−10h





admits an excellent rank-2 approximation at h = 1: ‖Φ1
F (Y )− [[Φ1

F (Y )]]2‖F ≤ 1.24× 10−10. On
the other hand, the tangent space projection

Φh
PF (Y ) =





1 0 0
0 0 0
0 0 10−6e1−10h



 .

results in a rank-2 matrix with a much larger error: ‖Φ1
F (Y )− Φ1

PF (Y )‖F ≥ 0.008.

2.3 Randomized low-rank approximation

Conceptually, a rank-r approximation is a map R : Rm×n → Mr. When randomization is used,
the map R is random, usually due to the use of random matrices for sketching. We measure
the quality of R through moments, which will later be used to derive concentration inequalities.
We say that R satisfies the moment assumption for q ≥ 1 if

‖R(Z)− Z‖Lq ≤ CR‖Z − [[Z]]r‖F , (7)
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holds for fixed but arbitrary Z ∈ R
m×n, with a constant CR being independent of Z.

Randomized low-rank approximations that utilize Gaussian random matrices for sketching
usually satisfy the moment assumption (7). In the following, we will establish this fact for the
generalized Nyström method [20, 24], which proceeds as follows. Given oversampling parameters
p, ℓ ∈ N and random matrices Ω ∈ R

n×(r+p), Ψ ∈ R
m×(r+p+ℓ), generalized Nyström constructs

a rank-r approximation of Z by first performing an oblique projection onto span(ZΩ) and then
truncating to rank r:

Z ≈ [[ZΩ(ΨTZΩ)†ΨTZ]]r := N (Z), (8)

where (·)† denotes the pseudoinverse. If ΨTZΩ ∈ R
(r+p+ℓ)×(r+p) has full column rank, we have

the equivalent expression
N (Z) = Q[[(ΨTQ)†ΨTZ]]r, (9)

where Q is an orthonormal basis of span(ZΩ), computed by, e.g., a QR factorization, ZΩ = QR.
For dense and unstructured matrices Ω and Ψ, computing the sketches ZΩ and ΨTZ usually
dominates the overall computational cost. In particular, this is true when Ω and Ψ are Gaussian
random matrices, i.e., their entries are independent standard normal Gaussian random variables.
The following theorem shows that generalized Nyström satisfies the moment assumption (7) in
this case.

Theorem 2. Suppose that Ω ∈ R
n×(r+p) and Ψ ∈ R

m×(r+p+ℓ) are independent standard Gaus-
sian matrices with p, ℓ ≥ 4. Setting q = min{p, ℓ}, it holds for Z ∈ R

m×n that

‖N (Z)− Z‖Lq =
(
E[‖N (Z)− Z‖qF ]

) 1

q ≤ CN ‖Z − [[Z]]r‖F

with CN = 1 + 2
√

(1 + r + p)(1 + r).

Proof. By the triangle inequality

‖N (Z)− Z‖Lq ≤ ‖[[ZΩ(ΨTZΩ)†ΨTZ]]r − ZΩ(ΨTZΩ)†ΨTZ‖Lq + ‖ZΩ(ΨTZΩ)†ΨTZ − Z‖Lq

≤ ‖[[Z]]r − ZΩ(ΨTZΩ)†ΨTZ‖Lq + ‖ZΩ(ΨTZΩ)†ΨTZ − Z‖Lq

≤ ‖[[Z]]r − Z‖Lq + 2‖ZΩ(ΨTZΩ)†ΨTZ − Z‖Lq .

To bound the second term, we follow the proof of [16, Theorem 11]. Considering an orthonormal
basis Q of ZΩ, one obtains that

E[‖Z − ZΩ(ΨTZΩ)†ΨTZ‖qF ] ≤ (1 + r + p)q/2E[‖(I −QQT )Z‖qF ]

≤ (1 + r + p)q/2
(
E
p[‖(I −QQT )Z‖F ]

)q

= (1 + r + p)q/2
(

E
p/2[‖(I −QQT )Z‖2F ]

)q/2

≤ (1 + r + p)q/2
(
(1 + r)‖Z − [[Z]]r‖

2
F

)q/2
.

Therefore, ‖N (Z)−Z‖Lq ≤ ‖Z− [[Z]]r‖F +2
√

(1 + r + p)(1 + r)‖Z− [[Z]]r‖F = CN ‖Z− [[Z]]r‖F .

To keep our developments concrete, we will always use generalized Nyström instead of an
abstract randomized method R in the rest of the paper. However, the theoretical results remain
valid for any R satisfying (7).
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2.4 Idealized randomized projection method

Following [11, Ch. IV.4], a rank-r approximation to the solution A((i + 1)h) is obtained by
combining exact integration with rank-r truncation

Yi+1 = [[Φh
F (Yi)]]r, Y0 = [[A0]]r.

This is an idealized integrator because the exact flow Φh
F still needs to be approximated in order

to obtain a practical method. Replacing rank-r truncation by the generalized Nyström method
one gets the idealized randomized projection method

Yi+1 = Ni(Φ
h
F (Yi)) = [[Φh

F (Yi)Ωi(ΨiΦ
h
F (Yi)Ωi)

†ΨT
i Φ

h
F (Yi)]]r. Y0 = N0(A0). (10)

The subscript i of N is used to emphasize that the generalized Nyström method is used with
different (independent) Ωi ∈ R

n×(r+p), Ψi ∈ R
m×(r+p+ℓ) in every time step.

2.4.1 Error analysis

In this section, we provide an error analysis of the idealized method (10) when Ωi, Ψi are inde-
pendent standard Gaussian matrices. The following theorem provides a bound on the Lq norm
of the error. The proof basically follows from the proof of [14, Theorem 2], with the Frobenius
norm replaced by the Lq norm. It is included for convenience, because similar arguments will
be used again below.

Theorem 3. With the assumptions stated in Section 2.2 and assuming ‖[[A0]]r−A0‖F ≤ δ holds
for the initial data, the method (10) with independent standard Gaussian matrices Ωi ∈ R

n×(r+p),
Ψi ∈ R

m×(r+p+ℓ) and oversampling parameters p, ℓ ≥ 4 satisfies the error estimate

‖YN −A(Nh)‖Lq ≤ C(δ + ǫ)

for q = min{p, ℓ} on a finite time-interval 0 ≤ Nh ≤ T for every 0 < h ≤ h0. The constant C
only depends on L, T, h0 CM , and CN .

Proof. We first note that Ni is stochastically independent of Φh
F (Yi). By the the law of total

expectation, Theorem 2 and Assumption (6), we get

‖Ni(Φ
h
F (Yi))− Φh

F (Yi)‖Lq =
(

E

[

E[‖Ni(Φ
h
F (Yi))− Φh

F (Yi)‖
q
F |Yi]

])1/q

≤
(

E[Cq
N‖Φh

F (Yi)− [[Φh
F (Yi)]]r‖

q
F ]
)1/q

≤ CNCM ǫh. (11)

To bound the Lq norm of the global error, we follow the proof of [14, Theorem 2] and use a
telescoping sum:

‖YN −A(Nh)‖Lq =
∥
∥
∥

N∑

i=1

(Φ
(N−i)h
F (Yi)− Φ

(N−i+1)h
F (Yi−1)) + ΦNh

F (Y0)− ΦNh
F (A0)

∥
∥
∥
Lq

≤
N∑

i=0

Ei,

where we define

Ei = ‖Φ
(N−i)h
F (Yi)− Φ

(N−i)h
F (Φh

F (Yi−1))‖Lq , i = 1, · · · , N,

E0 = ‖ΦNh
F (Y0)− ΦNh

F (A0)‖Lq .
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The Lipschitz continuity of F implies ‖Φt
F (X) − Φt

F (Y )‖F ≤ eLt‖X − Y ‖F . Therefore, by the
law of total expectation and (11),

Ei =
(

E

[

E[‖Φ
(N−i)h
F (Yi)− Φ

(N−i)h
F (Φh

F (Yi−1))‖
q
F |Yi−1]

]) 1

q

≤ eLh(N−i)
(

E

[

E[‖Yi − Φh
F (Yi−1)‖

q
F |Yi−1]

]) 1

q

= eLh(N−i)
(

E

[

E[‖Ni−1(Φ
h
F (Yi−1))− Φh

F (Yi−1)‖
q
F |Yi−1]

]) 1

q

≤ CN · CMeLh(N−i)ǫh. (12)

In summary,

‖YN −A(Nh)‖Lq ≤ CN eLNhδ + CN · CM ǫ
∑

heLh(N−i),

which yields the desired result by bounding the sum by an integral, as in [14, P.80].

The Markov inequality turns the moment bound of Theorem 3 into tail bounds for the
approximation error.

Corollary 4. With the assumptions and notation stated in Theorem 3, the error estimate

‖YN −A(Nh)‖F ≤ Cη(δ + ǫ),

holds for any η ≥ 1 with probability at least 1− η−q.

Proof. By Markov’s inequality and Theorem 3,

Pr{‖YN −A(Nh)‖F ≥ Cη(δ + ǫ)} ≤

(

[E‖YN −A(Nh)‖qF ]
1/q

Cη(δ + ǫ)

)q

≤
1

ηq
.

Corollary 4 states that the generalized Nyström method produces an error on the level of
ǫ+ δ with high probability. Under the assumptions stated in Section 2.2, the same type of error
bound is obtained when using exact rank-r truncations.

3 Randomized low-rank Runge-Kutta methods

To turn the idealized projection method (10) into a practical method, we need to combine it
with a time-integration method, e.g., a RK method. However, directly replacing the exact flow
ΦF by a RK method will result in high ranks in the intermediate stages. To mitigate this issue,
we also apply the generalized Nyström method to these intermediate stages. To make this idea
specific, let us consider a general explicit Runge-Kutta method with s stages applied to the
matrix differential equation (1):

Z̃j = Ai + h

j−1
∑

l=1

ajlF (Z̃l), j = 1, . . . , s,

Ai+1 = Ai + h

s∑

j=1

bjF (Z̃j).

(13)
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Performing generalized Nyström in the intermediate stages yields our Randomized low-rank RK
method :

Zj = Yi + h

j−1
∑

l=1

ajlF (Nl(Zl)), j = 1, . . . , s,

Yi+1 = Ns+1

(

Yi + h
s∑

j=1

bjF (Nj(Zj))
)

.

(14)

Note that the index of N is now used to emphasize the use of different (independent) random
matrices Ωj,Ψj for different stages. Across different time steps, the random matrices are, of
course, also independently drawn. In (14), the rank of Zj increases linearly with respect to j.
However, there is no need to construct and store Zj explicitly. For all subsequent purposes, we
only need access to the Nyström approximation of Zj , and thus it suffices to compute and store
the sketches ZjΩj and ΨT

j Zj. In fact, the method (14) is equivalent to







ZjΩj = YiΩj + h

j−1
∑

l=1

ajlF (Nl(Zl)) Ωj

ΨT
j Zj = ΨT

j Yi + h

j−1
∑

l=1

ajlΨ
T
j F (Nl(Zl)) ,

j = 1, . . . , s,

Yi+1 = Ns+1

(

Yi + h

s∑

j=1

bjF (Nj(Zj))
)

.

(15)

We will use the expression (9) to evaluate Nj(Zj) and, for this purposes, only needs ΨT
j Zj, Ψj,

and ZjΩj (or, rather, the orthogonal factor of its QR decomposition).
Algorithm 1 contains the pseudo-code of the Randomized low-rank RK method. It closely

follows (15), except that we also precompute the sketches of F ([[Ẑj(Ψ
T
j Ẑj)

†Z̃j]]r) as they are
needed in subsequent stages.

3.1 Implementation aspects and cost

We now consider the efficient implementation and cost of a time step performed by Algorithm 1.
To simplify the discussion, we assume m = n and p = ℓ = O(r) ≪ n. We let cn denote the cost
of multiplying a vector of length n with Ω or Ψ. In the worst case, when Ω,Ψ are unstructured
dense random matrices, cn = O(nr). The use of structured random matrices can lead to lower cn.
For example, using the Subsampled Randomized Fourier Transform (SRFT) [12] for sketching
reduces cn to O(n log(r)).

Every (large) n×nmatrix occurring in the algorithm is represented in factored form UΣV T ∈
R
n×n, where U, V are tall matrices (not necessarily orthonormal) and Σ is a small square matrix

(not necessarily diagonal) of size equal to the rank of the matrix.
The evaluation of [[Ẑj(Ψ

T
j Ẑj)

†Z̃j]]r in Algorithm 1 requires O(nr2 + jnr) operations for

computing Ẑj , Z̃j and another O(nr2) operations for computing the factored form of the matrix.
The cost of applying F to a rank-r matrix and obtaining a factored form of the result strongly

depends on the nature of F . We will denote this cost by cF and the resulting rank by rF . In
some cases (see Section 4.1 for an example), cF = O(nr) and rF = O(r). In cases that lead to
large rF , the use of random sketches gives flexibility to exploit structure. For example, consider
the case that F (A) contains Hadamard products of the matrix A with itself, originating from,
e.g., quadratic nonlinearities in the underlying partial differential equation. Then although the
rank of the matrix Fj in Algorithm 1 is much larger than r, its factored representation has
rich Kronecker product structure, which can be exploited when sketching Fj with Khatri-Rao
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Algorithm 1 Randomized low-rank Runge-Kutta method with s stages

Input: Differential equation (1) defined by F and initial condition A0 ∈ R
m×n. Target rank r,

oversampling parameters p, ℓ, step size h > 0, number of steps N ≥ 0.
Output: Approximation YN ∈ Mr of A(Nh).
Draw ind. random matrices Ω ∈ R

n×(r+p), Ψ ∈ R
m×(r+p+ℓ).

Ŷ0 = A0Ω, Ỹ0 = ΨTA0

for i = 0, . . . , N − 1 do

Draw ind. random matrices Ωj ∈ R
n×(r+p), Ψj ∈ R

m×(r+p+ℓ) for j = 1, 2, . . . , (s+ 1).
for j = 1, . . . , s do

Ẑj = [[Ŷi(Ψ
T Ŷi)

†Ỹi]]rΩj + h
∑j−1

l=1 ajlK̂lj ⊲ Evaluate [[Ŷi(Ψ
T Ŷi)

†Ỹi]]r using (9)

Z̃j = ΨT
j [[Ŷi(Ψ

T Ŷi)
†Ỹi]]r + h

∑j−1
l=1 ajlK̃lj

Fj = F ([[Ẑj(Ψ
T
j Ẑj)

†Z̃j ]]r) ⊲ Evaluate [[Ẑj(Ψ
T
j Ẑj)

†Z̃j]]r using (9)
for q = j + 1, . . . , s+ 1 do ⊲ Pre-compute sketches of F for other stages

K̂jq = FjΩq

K̃jq = ΨT
q Fj

end for

end for

Ŷi+1 = YiΩs+1 + h
∑s

j=1 bjK̂j,s+1

Ỹi+1 = ΨT
s+1Yi + h

∑s
j=1 bjK̃j,s+1

Set Ψ = Ψs+1

end for

Return YN = [[ŶN (ΨŶN )†ỸN ]]r. ⊲ Compute [[ŶN (ΨT ŶN )†ỸN ]]r using (9)

products of random matrices [4, 17]. As another example, when F has block structure, one can
use the Block SRFT [3] to benefit from parallel computing. In Section 4.1.1 , we test numerically
the possibility to speed up the computation of K̂jq and K̃jq by using the same random matrices.
Although there is little justification, this variant appears to lead to an accuracy comparable to
Algorithm 1. When not using any of the tricks mentioned above, the computation of each K̂jq

and K̃jq requires O(rF cn + r2F r + nrF r) = O(rF cn + nrF r) operations.
In summary, the complexity of the jth stage is O(jnr+nr2+ cF +(s+1− j)(rF cn+nrF r)),

and thus one step of the Randomized RK method has a total complexity of

O(s2(rF cn + nrF r) + snr2 + scF ). (16)

It can be seen that the computation of K̂jq, K̃jq is a dominating part of the cost.
The linearity of the sketches with respect to the data (sometimes also called a streaming

property), makes the generalized Nyström method a preferred choice for the randomized low-
rank approximation in Algorithm 1. It allows one to only store and work with sketches of Fj , j =
1, . . . , s when computing subsequent stages. In contrast, the randomized SVD uses an orthogonal
projection that is not linear in the data and, in turn, the full rank-rF factorizations of the
potentially high-rank matrices Fj need to be stored. Another disadvantages of the randomized
SVD is that its direct application to the sums appearing in the Runge-Kutta stages is quite
expensive, requiring O(ns2r2F ) operations.

9



3.2 Comparison to Projected Runge-Kutta method

The Projected Runge-Kutta method (PRK) from [14] is closely related to our proposed method (14).
It proceeds by performing the time stepping

Zj = Yi + h

j−1
∑

l=1

ajlPr(R(Zl))F (R(Zl)), j = 1, . . . , s,

Yi+1 = R
(

Yi + h

s∑

j=1

bjPr(R(Zj))F (R(Zj))
)

.

(17)

Here, R denotes a retraction to the manifold Mr and a common choice is the truncated SVD.
The tangent space projection Pr in (17) reduces the rank of F (R(Zl)) to 2r, which can make
the subsequent application of R signficantly cheaper. Our method uses sketching instead of
tangent space projection, which has two potential advantages: (1) As discussed in Section 2.2,
the tangent space projection could introduce significant error, even when the solution admits a
good rank-r approximation. In this situation, we expect our method (14) to be more accurate.
This expectation is confirmed by the numerical experiments in Section 4. (2) As discussed
in Section 3.1 above, sketching gives additional flexibility in the choice of random matrices to
exploit structure in F applied to a rank-r matrix. Tangent space projection does not offer this
flexibility.

One iteration of (17) needs to apply retraction to the matrices Zj, which have rank at most
2jr for j = 1 . . . s. When using the truncated SVD to perform retraction, the cost is dominated
by the QR factorizations of the n× 2jr factors of Zj. In summary, the total complexity for one
time step of PRK (17) is

O( s3nr2
︸ ︷︷ ︸

total retraction cost

+ snrF r
︸ ︷︷ ︸

s× application of Pr

+ scF
︸︷︷︸

s× evaluation of F

)

Compared to (16), we see that the term s2nrF r is reduced to snrF r, which only becomes
relevant when rF > sr. This is because PRK can reuse computations related to tangent space
projections across different stages, while the randomized low-rank RK method uses different
sketches for every stage and can thus not reuse computations. As mentioned above, this issue can
be mitigated by reusing random matrices for sketching, at the expense of theoretical justification.
However, as s is typically very small (e.g., 1, 2 or 4), this issue may not be too relevant in practice.

3.3 Error analysis

With high probability, our method achieves at least the same qualitative error behavior that
has been established for PRK. To see this, we follow [14] and consider the stage orders γ1, . . . γs,
which are defined as the local errors of the stages Z̃j in the standard RK method (13): For every
h ≤ h0,

‖Z̃j − φ
cjh
F (Ai)‖F ≤ CLh

γj+1, j = 1, . . . , s, (18)

with cj = aj1 + aj2 + · · · + aj,j−1. We then obtain the following result, which corresponds to
Theorem 6 in [14].

Theorem 5. Consider the randomized low-rank RK method (14) utilizing independent standard
Gaussian matrices, oversampling parameters p, ℓ ≥ 4, and an explicit s-stage RK method of
order τ with stage orders γ1 ≤ γ2 ≤ · · · ≤ γs. Denote

γ =

{

min(τ, γ2 + 1) if b2 6= 0,

min(τ, γ3 + 1, γ2 + 2) if b2 = 0.

10



Then with the assumptions stated in Theorem 3, the global error is bounded for q = min{p, ℓ} by

‖YN −A(Nh)‖Lq ≤ C(δ + ǫ+ hγ)

on the finite time interval 0 ≤ Nh ≤ T , for all h ≤ h0. The constant C depends only on L,T ,
h0,s, CL,CN , maxij |aij | and maxi |bi|. In particular, for any η ≥ 1, it holds for fixed h and N
that

Pr
{
‖YN −A(Nh)‖F ≥ Cη(ǫ+ hγ + δ)

}
≤

1

ηq
.

Proof. The result of this theorem essentially follows from replacing the Frobenius norm in the
proof of [14, Theorem 6] by the Lq norm and performing some additional minor modifications.
For completeness, we have included the proof in the appendix.

Theorem 5 above shows that the randomized RK methods with the coefficients given by the
following RK methods of order 1,2 and 3, enjoy the usual convergence order up to O(ǫ):

• RK 1 (Euler): b1 = 1,

• RK 2 (Heun’s method): a21 = 1, b1 = b2 =
1
2 ,

• RK 3 (Heun’s third-order method): a21 = a32 =
1
2 , a43 = 1, b1 = b4 =

1
6 , b2 = b3 =

1
3 .

Unfortunately, for RK 4 we only obtain order 2 from Theorem 5. Section 3.4 investigates this
combination further.

Remark 6. As already noted, the global nature of the three assumptions in Section 2.1 can be
quite limiting. If we modify these assumptions (4), (5) and (6) such that they only hold in a
neighborhood of the exact solution A(t) for 0 ≤ t ≤ T , we need to additionally ensure that Yi

and the intermediate stages remain in the neighborhood. Due to the presence of randomness,
this complicates the analysis and yields slightly worse results. In the following, we sketch which
modifications need to be performed in order to localize the assumptions.

Suppose we want to ensure Ei := ‖Yi − A(ih)‖F ≤ M for every i = 1, . . . N − 1 to use the
properties (4), (5) and (6) locally. (We simplify the discussion by ignoring the probability that
the intermediate stages leave the neighborhood; it is easy to adapt the approach outlined here by
additionally requiring ‖Zj − Z̃j‖F ≤ M ′ for j = 1, . . . , s, which will yield the same convergence
rate with a different constant and a somewhat higher failure probability, increased by a factor
s.) To proceed, we can utilize the failure probability estimate of Theorem 5 to conclude

Pr
{
Ei > M | ∩i−1

j=0 {Ej ≤ M}
}
≤

(
C(ǫ+ hγ + δ)

M

)q

.

Using conditional probability and Bernoulli’s inequality,

Pr
{
∩N−1
j=0 {Ej ≤ M}

}
= Pr

{
EN−1 ≤ M | ∩N−2

j=0 {Ej ≤ M}
}
Pr
{
∩N−2
j=0 {Ej ≤ M}

}

≥
(

1−

(
C(ǫ+ hγ + δ)

M

)q )

Pr{∩N−2
j=0 {Ej ≤ M}}

≥
(

1−

(
C(ǫ+ hγ + δ)

M

)q )(N−1)

≥ 1− (N − 1)

(
C(ǫ+ hγ + δ)

M

)q

.

Similarly, we have

Pr{‖YN −A(Nh)‖F ≥ Cη(ǫ+ hγ + δ)} ≤
1

ηq
+ (N − 1)

(
C(ǫ+ hγ + δ)

M

)q

.
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The additional second term is not large when M is large and/or ǫ+ hγ + δ is small. To further
quantify how this term affects the order of convergence, we substitute η = M

h1/q and assume
C(ǫ+ hγ + δ) ≤ 1, h ≤ 1, leading to

Pr
{

‖YN −A(Nh)‖F ≥ CM(ǫ+ hγ + δ)h−
1

q

}

≤
h

M q
+(N −1)

(
C(ǫ+ hγ + δ)

M

)q

≤
N

M q
. (19)

The presence of the additional factor h
− 1

q reduces the convergence order by 1
q . Because of

q = min{p, ℓ}, even modest choices of the oversampling parameters p, ℓ imply that this potential
order loss is negligible. ´

3.4 Error analysis of randomized low-rank Runge-Kutta 4 method

Although our numerical experiments indicate convergence order 4 for the randomized RK
method based on RK 4, it appears to be difficult to establish this order theoretically. In the
following, we establish order 4 when the intermediate stages are oversampled. Let us emphasize
that this oversampling is only performed for theoretical purposes; in practice, it does not seem
to be needed.

Concretely, we plug the coefficients of the classical RK 4 method into (14) and oversample
the intermediate stage as follows:

Ẑ1 = N 15r
1 (Yi)

Ẑ2 = N 15r
2 (Yi +

h

2
F (Ẑ1))

Ẑ3 = N 15r
3 (Yi +

h

2
F (Ẑ2))

Ẑ4 = N 15r
4 (Yi + hF (Ẑ3))

Yi+1 = N5

(

Yi +
h

6
(F (Ẑ1) + 2F (Ẑ2) + 2F (Ẑ3) + F (Ẑ4))

)

. (20)

Here, N5 refers to the usual generalized Nyström method (8) with target rank r, while N 15r
i , for

i = 1, . . . , 4, refers to the generalized Nyström method with the increased target rank 15r. As
the method leaves Mr, we need to impose a stronger assumption on low-rank approximability.
For h ≤ h0, we assume that

‖Φh
F (Y )− [[Φh

F (Y )]]k‖F ≤ CMhǫ, ∀Y ∈ Mk, ∀ r ≤ k ≤ 15r. (21)

We start our analysis of (20) with a result on the low-rank approximability of F implied
by (21).

Lemma 7. Assuming that F satisfies (21), let k be any integer such that r ≤ k ≤ 15r. Then

‖F (Y )− [[F (Y )]]2k‖F ≤ CM ǫ, ∀Y ∈ Mk.

Proof. By the definition of the flow, F (Y ) is the time derivative of Φt
F (Y ). Thus, for any γ > 0,

there exists h > 0 such that

∥
∥
∥
Φh
F (Y )− Φ0

F (Y )

h
− F (Y )

∥
∥
∥
F
≤ γ.
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Because [[Φ
hj

F (Y )]]k −Φ0
F (Y ) has rank at most 2k, it follows that

‖F (Y )− [[F (Y )]]2k‖F ≤
∥
∥
∥F (Y )−

[[Φ
hj

F (Y )]]k − Φ0
F (Y )

hj

∥
∥
∥
F

≤
∥
∥
∥F (Y )−

Φ
hj

F (Y )− Φ0
F (Y )

hj

∥
∥
∥
F
+
∥
∥
∥
Φ
hj

F (Y )− [[Φ
hj

F (Y )]]k
hj

∥
∥
∥
F

≤ γ + CM ǫ.

The result of the lemma is obtained by taking γ → 0.

The following auxiliary result helps to bound the local error of (20).

Lemma 8. Let Z ∈ Mr,X ∈ R
m×n, α ≥ 0, and k ≤ 14r. Then

‖Z + αX − [[Z + αX]]15r‖F ≤ α‖X − [[B]]k‖F

holds for any B ∈ R
m×n.

Proof. Using that Z + α[[B]]k has rank at most 15r, the result follows from

‖Z + αX − [[Z + αX]]15r‖F ≤ ‖Z + αX − [[Z + α[[B]]k]]15r‖F = α‖X − [[B]]k‖F .

We are now in the position to establish a local error estimate for (20).

Lemma 9. Suppose that the assumptions stated in Section 2.1 and (21) hold. Given Yi ∈ Mr,
one step of the method (20) with independent standard Gaussian matrices and oversampling
parameters p, ℓ ≥ 4 satisfies the local error estimate

‖Φh
F (Yi)− Yi+1‖Lq ≤ C(hǫ+ h5),

for q = min{p, ℓ} and all 0 < h ≤ h0. The constant C depends only on L, T, h0 CM , and CN .

Proof. The proof proceeds by bounding the moments of the differences between the stages Ẑj

of (20) and the stages Z̃j of the classic RK4 applied to Yi, as defined in (13). For j = 1, Yi ∈ Mr

implies
‖Ẑ1 − Z̃1‖Lq = ‖N 15r

1 (Yi)− Yi‖Lq = 0.

For j = 2, we set Yi,1 := Yi +
h
2F (Ẑ1)

‖Ẑ2 − Z̃2‖Lq =
∥
∥
∥N 15r

2 (Yi,1)− Yi −
h

2
F (Z̃1)

∥
∥
∥
Lq

≤
∥
∥
∥N 15r

2 (Yi,1)−N 15r
2 (Yi +

h

2
[[F (Z̃1)]]2r)

∥
∥
∥
Lq

+
∥
∥
∥N 15r

2 (Yi +
h

2
[[F (Z̃1)]]2r)− Yi −

h

2
F (Z̃1)

∥
∥
∥
Lq

=
∥
∥
∥N 15r

2 (Yi,1)−N 15r
2 (Yi +

h

2
[[F (Z̃1)]]2r)

∥
∥
∥
Lq

+
h

2
‖[[F (Z̃1)]]2r − F (Z̃1)‖Lq

≤
∥
∥
∥N 15r

2 (Yi,1)−N 15r
2 (Yi +

h

2
[[F (Z̃1)]]2r)

∥
∥
∥
Lq

+
h

2
CM ǫ (22)
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The second equality above holds because Yi +
h
2 [[F (Z̃1)]]2r has rank at most 3r, and therefore

Yi +
h
2 [[F (Z̃1)]]2r = N 15r

2 (Yi +
h
2 [[F (Z̃1)]]2r) holds almost surely. The last inequality follows from

Lemma 7. With similar reasoning, we obtain the following bound for the first term in (22):

∥
∥
∥N 15r

2 (Yi,1)−N 15r
2 (Yi +

h

2
[[F (Z̃1)]]2r)

∥
∥
∥
Lq

=
∥
∥
∥N 15r

2 (Yi,1)− (Yi +
h

2
[[F (Z̃1)]]2r)

∥
∥
∥
Lq

≤
∥
∥
∥N 15r

2 (Yi,1)− (Yi +
h

2
F (Z̃1))

∥
∥
∥
Lq

+
h

2
CM ǫ.

Using that Ẑ1 = Z̃1 = Yi holds almost surly, the law of total expectation, and Theorem 2 give

∥
∥
∥N 15r

2 (Yi,1)− (Yi +
h

2
F (Z̃1))

∥
∥
∥
Lq

=
(

E

[

E(‖N 15r
2 (Yi,1)− (Yi,1)‖

q
F |Ẑ1)

]) 1

q

≤CN

∥
∥
∥Yi,1 − [[Yi,1]]15r

∥
∥
∥
Lq

≤CN

∥
∥
∥Yi +

h

2
F (Yi)− [[Yi +

h

2
F (Yi)]]3r

∥
∥
∥
Lq

≤CN

∥
∥
∥Yi +

h

2
F (Yi)− (Yi +

h

2
[[F (Yi)]]2r)

∥
∥
∥
Lq

≤
CNh

2
CM ǫ.

In summary, we have proven

‖Ẑ2 − Z̃2‖Lq ≤
(CN + 2)CM

2
hǫ. (23)

Note that we also have the following inequality by Lemma 7:

‖Z̃2 − [[Z̃2]]3r‖Lq ≤
∥
∥
∥Yi +

h

2
F (Z̃1)− Yi −

h

2
[[F (Z̃1)]]2r

∥
∥
∥
Lq

≤
h

2
CM ǫ. (24)

For j = 3, we set Yi,2 := Yi +
h
2F (Ẑ2) and apply an analogous reasoning:

‖Ẑ3 − Z̃3‖Lq =
∥
∥
∥N 15r

3 (Yi,2)− Yi −
h

2
F (Z̃2)

∥
∥
∥
Lq

≤
∥
∥
∥N 15r

3 (Yi,2)−N 15r
3 (Yi +

h

2
[[F ([[Z̃2]]3r)]]6r)

∥
∥
∥
Lq

+
∥
∥
∥N 15r

3 (Yi +
h

2
[[F ([[Z̃2]]3r)]]6r)− Yi −

h

2
F (Z̃2)

∥
∥
∥
Lq

=
∥
∥
∥N 15r

3 (Yi,2)−N 15r
3 (Yi +

h

2
[[F ([[Z̃2]]3r)]]6r)

∥
∥
∥
Lq

+
h

2
‖F (Z̃2)− [[F ([[Z̃2]]3r)]]6r‖Lq

=
∥
∥
∥N 15r

3 (Yi,2)− (Yi +
h

2
[[F ([[Z̃2]]3r)]]6r)

∥
∥
∥
Lq

+
h

2
‖F (Z̃2)− [[F ([[Z̃2]]3r)]]6r‖Lq

≤
∥
∥
∥N 15r

3 (Yi,2)− (Yi,2)
∥
∥
∥
Lq

+
h

2
‖F (Ẑ2)− [[F ([[Z̃2]]3r)]]6r‖Lq

+
h

2
‖F (Z̃2)− [[F ([[Z̃2]]3r)]]6r‖Lq .

The first term of the last inequality can be bounded using Lemma 8:

∥
∥
∥N 15r

3 (Yi,2)− (Yi,2)
∥
∥
∥
Lq

≤ CN

∥
∥
∥Yi,2 − [[Yi,2]]15r

∥
∥
∥
Lq

≤
h

2
CN ‖F (Ẑ2)− [[F ([[Z̃2]]3r)]]6r‖Lq .
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Therefore, by (23) and (24),

‖Ẑ3 − Z̃3‖Lq ≤
(CN + 1)h

2
‖F (Ẑ2)− [[F ([[Z̃2]]3r)]]6r‖Lq +

h

2
‖F (Z̃2)− [[F ([[Z̃2]]3r)]]6r‖Lq

≤
(CN + 2)h

2
(‖F (Ẑ2)− F (Z̃2)‖Lq + ‖F (Z̃2)− F ([[Z̃2]]3r)‖Lq

+ ‖F ([[Z̃2]]3r)− [[F ([[Z̃2]]3r)]]6r‖Lq )

≤
h

2
(CN + 2)(L

(CN + 2)CM

2
hǫ+ L

h

2
CM ǫ+ CM ǫ) ≤ C3hǫ.

Also, as for j = 2,

‖Z̃3 − [[Z̃3]]7r‖Lq ≤
∥
∥
∥Yi +

h

2
F (Z̃2)− Yi −

h

2
[[F ([[Z̃2]]3r)]]6r

∥
∥
∥
Lq

≤
h

2
[CM ǫ+ L

h

2
CM ǫ].

Finally, for j = 4, we set Yi,3 := Yi + hF (Ẑ3) and obtain

‖Ẑ4 − Z̃4‖Lq =
∥
∥
∥N 15r

4 (Yi,3)− Ŷi − hF (Z̃3)
∥
∥
∥
Lq

≤
∥
∥
∥N 15r

4 (Yi,3)−N 15r
4 (Yi + h[[F ([[Z̃3]]7r)]]14r)

∥
∥
∥
Lq

+
∥
∥
∥N 15r

4 (Yi + h[[F ([[Z̃3]]7r)]]14r)− Yi − hF (Z̃3)
∥
∥
∥
Lq

≤
∥
∥
∥N 15r

4 (Yi,3)− (Yi + h[[F ([[Z̃3]]7r)]]14r)
∥
∥
∥
Lq

+ h
∥
∥
∥F (Z̃3)− [[F ([[Z̃3]]7r)]]14r

∥
∥
∥
Lq

≤
∥
∥N 15r

4 (Yi,3)− (Yi,3)
∥
∥
Lq

+ h
∥
∥
∥F (Ẑ3)− [[F ([[Z̃3]]7r)]]14r

∥
∥
∥
Lq

+ h
∥
∥
∥F (Z̃3)− [[F ([[Z̃3]]7r)]]14r

∥
∥
∥
Lq

.

The first term of the last inequality can once again be bounded using Lemma 8:
∥
∥N 15r(Yi,3)− (Yi,3)

∥
∥
Lq

≤ CN ‖Yi,3 − [[Yi,3]]15r‖Lq ≤ hCN ‖F (Ẑ3)− [[F ([[Z̃3]]7r)]]14r‖Lq .

Hence,

‖Ẑ4 − Z̃4‖Lq ≤h(CN + 1)‖F (Ẑ3)− [[F ([[Z̃3]]7r)]]14r‖Lq + h‖F (Z̃3)− [[F ([[Z̃3]]7r)]]14r‖F

≤h(CN + 2)(‖F (Ẑ3)− F (Z̃3)‖Lq + ‖F (Z̃3)− F ([[Z̃3]]7r)‖F

+ ‖F ([[Z̃3]]7r)− [[F ([[Z̃3]]7r)]]14r‖F )

≤h(CN + 2)(LC3hǫ+ L
h

2
[CM ǫ+ L

h

2
CM ǫ] + CM ǫ) ≤ C4hǫ.

Collecting the obtained bounds for the stages and using Lipschitz continuity, we have

∥
∥
∥Yi +

h

6
(F (Ẑ1) + 2F (Ẑ2) + 2F (Ẑ3) + F (Ẑ4))

− Yi −
h

6
(F (Z̃1) + 2F (Z̃2) + 2F (Z̃3) + F (Z̃4))

∥
∥
∥
Lq

≤ C5h
2ǫ. (25)

Recall that one step of the classic RK 4 method has error O(h5). With the true solution Φh
F (Yi)

satisfying the low-rank approximability assumption (21), we find that one step of RK 4 satisfies

∥
∥
∥Yi +

h

6
(F (Z̃1) + 2F (Z̃2) + 2F (Z̃3) + F (Z̃4))

− [[Yi +
h

6
(F (Z̃1) + 2F (Z̃2) + 2F (Z̃3) + F (Z̃4))]]r

∥
∥
∥
F
≤ C6(h

5 + hǫ). (26)
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Using Theorem 2 and the inequalities (25), (26), we obtain

∥
∥
∥Yi+1 − Yi −

h

6
(F (Ẑ1) + 2F (Ẑ2) + 2F (Ẑ3) + F (Ẑ4))

∥
∥
∥
Lq

≤CN

∥
∥
∥Yi +

h

6
(F (Ẑ1) + 2F (Ẑ2) + 2F (Ẑ3) + F (Ẑ4))

− [[Yi +
h

6
(F (Ẑ1) + 2F (Ẑ2) + 2F (Ẑ3) + F (Ẑ4))]]r

∥
∥
∥
Lq

≤CN

∥
∥
∥Yi +

h

6
(F (Ẑ1) + 2F (Ẑ2) + 2F (Ẑ3) + F (Ẑ4))

− [[Yi +
h

6
(F (Z̃1) + 2F (Z̃2) + 2F (Z̃3) + F (Z̃4))]]r

∥
∥
∥
Lq

≤ CN (C5h
2ǫ+ C6(h

5 + hǫ)).

The result of the lemma is concluded from the following inequality:

‖Φh
F (Yi)− Yi+1‖Lq ≤ ‖Φh

F (Yi)− Yi −
h

6
(F (Z̃1) + 2F (Z̃2) + 2F (Z̃3) + F (Z̃4))‖Lq

+ C5h
2ǫ+ CN (C5h

2ǫ+ C6(h
5 + hǫ)) ≤ O(h5 + hǫ).

Finally, the following theorem establishes order 4 with respect to h of the modified random-
ized low-rank RK 4 method (20). This provides some theoretical explanation for the convergence
order 4 we observe for the randomized low-rank RK 4 method (without intermediate rank in-
creases).

Theorem 10. Suppose that the assumptions stated in Section 2.1 and (21) hold. Under the as-
sumption (21) and the assumptions stated in section 2.1. The the global error of the scheme (20)
with independent standard Gaussian matrices and oversampling parameters p, ℓ ≥ 4 satisfies for
q = min{p, ℓ} the bound

‖YN −A(Nh)‖Lq ≤ C(ǫ+ h4 + δ),

on the finite time-interval 0 ≤ nh ≤ T and for every 0 < h ≤ h0. The constant C depends only
on L, T, h0 CM and CN . In particular, for any η ≥ 1, it holds for fixed h and N that

Pr{‖YN −A(Nh)‖F ≥ Cη(ǫ+ h4 + δ)} ≤
1

ηq
.

Proof. By Lemma 9 we have

(

E(E[‖Φh
F (Yi)− Yi+1‖

q
F |Yi])

)1/q
≤
(

E[Cq(h5 + hǫ)q]
)1/q

= C(h5 + hǫ).

Substituting this bound into (12) proves the first statement of the theorem. The second state-
ment is proved by Markov’s inequality, as in the proof of Corollary 4.

4 Numerical Experiments

In the following numerical experiments, we verify the accuracy of randomized low-rank RK
methods, Algorithm 1, which will be denoted as Rand RK. In particular, we consider Rand
RK1 (Euler), Rand RK2 and Rand RK4, based upon the Euler method, Heun’s method and the
classical RK 4 method, respectively. For convenience, we recall the corresponding coefficients:

• Rand RK1 (Euler): b1 = 1
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• Rand RK2: a21 = 1, b1 = b2 =
1
2 ,

• Rand RK4: a21 = a32 =
1
2 , a43 = 1, b1 = b4 =

1
6 , b2 = b3 =

1
3 .

We have implemented the generalized Nystöm method following [23]; we always use Gaussian
randommatrices and the oversampling parameters p = ℓ = max{2, 0.1r} for sketching. Although
the generalized Nyström method is usually numerically stable [20], it may exhibit instabilities,
especially when ΨTZΩ is numerically rank deficient. We have never observed such an insta-
bility in our numerical experiments, but let us point out that a numerically safer variant with
regularization is described in [20]. Note that our implementation of Rand RK4 does not use
oversampling in the intermediate stage, that is, we have implemented Algorithm 1 with the
coefficients of RK 4 instead of (20).

The error is measured by the Frobenius norm between the reference solution and the ap-
proximation. The reference solution is obtained by solving the full matrix differential equation
with MATLAB ODE45 using the tolerances {’RelTol’, 1e-10, ’AbsTol’, 1e-10}. Because
our methods involve randomization, we report the mean approximation error as well as the
spread between the largest and smallest errors for 10 independent random trials (indicated by
lower/upper horizontal lines in the graph).

In the first two experiments, we also report the error of our implementation of the projected
RK s method [14] for s = 1, 2, 4 as well as the projector splitting integrator [19] with the sub-
steps computed by MATLAB’s ODE45 using the same tolerance parameters as above. The initial
value for these methods is obtained by applying the truncated SVD to the initial matrix A0.

All experiments have been performed in Matlab (version 2023a) on a Macbook Pro with an
Apple M1 Pro processor. The code used to perform the experiments and produce the figures
can be found at https://github.com/hysanlam/rand_RK.

4.1 Lyapunov matrix differential equation

As a first simple experiment, we approximate the solution of a Lyapunov matrix differential
equation [25, Section 6.1], which takes the form

Ȧ(t) = LA(t) +A(t)L+ α
C

‖C‖F
, A(0) = A0,

where A(t) ∈ R
n×n, L ∈ R

n×n, C ∈ R
n×n, α ≥ 0 and t ∈ [0, T ]. We set n = 128 and use the

symmetric matrix L = diag(1,−2, 1) ∈ R
128×128. For setting the entries of the source term C

and initial matrix A0, we follow a construction similar to the one used in [6, section 5.1]:

Cij =

11∑

k=1

10−(k−1) · e−k(x2

i+y2j ),

(A0)ij =
20∑

k=1

bk · sin(kxi) sin(kyj), with bk =

{

1, if k = 1

5e−(7+0.5(k−2)), if k > 1,

where (xi, yj), for i, j = 1, . . . 128, are uniform discretization points of the square [−π, π]×[−π, π].
The final time is set to T = 1 and first consider α = 1. Figure 1 displays the singular values of
the reference solution at t = T , and the error of the approximation obtained by Rand Euler and
Rand RK4 with different ranks. We can see that Rand Euler achieves first-order convergence
in time, while Rand RK4 achieves fourth-order convergence in time until it reaches the level of
low rank approximation error. Moreover, both methods demonstrate robust behavior despite
randomness; among these 10 trials, the maximum error is only at most three times the empirical
mean.
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Figure 1: Lyapunov matrix differential equation with α = 1. The singular values of the reference
solution at time T = 1 together with the approximation errors of the numerical approximation
obtained via the Rand Euler and Rand RK4 for different ranks and time-step sizes.

We now fix the rank to r = 10 and compare the accuracy of Rand Euler, Rand RK2, and
Rand RK4 with other methods, including PRK1, PRK2, PRK4, and projector splitting for
α = 10−5 as well as α = 1. In Table 1, we report the average and maximum values of the
tangential projection error ‖F (Yi)−Pr(Yi)F (Yi)‖F , where Yi is the approximation computed at
the ith time step by PRK 2 with h = 5×10−3. For α = 1 this error is much larger than α = 10−5.
However, when the tangential projection error is large, the accuracy and convergence behavior
of PRK and projector splitting are not guaranteed. This is indeed observed in Figure 2. For
α = 10−5, PRK 1, PRK 2, and projector splitting exhibit the expetected order of convergence.
PRK 4 seems to even exhibit fourth-order convergence initially but this quickly deteriorates for
smaller h. When α = 1, all these methods only show first-order convergence. On the other
hand, the randomized methods remain robust: Rand Euler, Rand RK2, and Rand RK4 exihibit
first, second, and fourth-order convergence, respectively, for both choices of α.

α 10−5 1

average ‖F (Yi)− Pr(Yi)F (Yi)‖F 1.3553 × 10−7 4.0144 × 10−4

max ‖F (Yi)− Pr(Yi)F (Yi)‖F 1× 10−5 0.7932

Table 1: Lyapunov matrix differential equation with α = 10−5 and α = 1. Average and
maximum ‖F (Yi)−Pr(Yi)F (Yi)‖F for the approximation Yi at the ith time step of PRK 2 with
h = 5× 10−3.
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Figure 2: Lyapunov matrix differential equation with α = 10−5 and α = 1. Comparison of
absolute approximation errors for different low-rank integrators using rank r = 10.

4.1.1 Speeding up by constant random matrices

As indicated in Section 3.2, the cost of computing the sketches K̂jq, K̃jq in Algorithm 1 can
be divided by nearly a factor s when choosing the same random matrices across the stages
in one time step. That is, we draw two independent Gaussian matrices Ω1 and Ψ1, and set
Ω1 = Ω2 = · · · = Ωs+1, Ψ1 = Ψ2 = · · · = Ψs+1. In this experiment, we ran 10 random
trials to solve the differential Lyapunov equation for α = 1 and compare the described constant
choice with the standard (independent) choice of random matrices in Algorithm 1. We tested
Rand RK2 and Rand RK4 with different ranks and plotted the obtained errors in Figure 3.
For this example, we observe comparable performance when using either different or the same
random matrices across the stages in a time step. Although this modification is computationally
attractive and likely the preferred way to run Algorithm 1, we are unable to establish an error
bound due to the lack of stochastic independence of the stages.
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Figure 3: Lyapunov matrix differential equation with α = 1. Comparison of absolute approxi-
mation errors for Rand RK2, Rand RK2 with different (independent) random matrices across
stages vs. Rand RK2 and Rand RK4 with the same random matrices across stages.

4.2 Non-linear Schrödinger equation

We now consider the non-linear Schrödinger equation from [14, Section 5.3], where A : [0, T ] →
C
n×n evolves according to

Ȧ(t) = i[
1

2
(BA+AB) + α|A|2A]. (27)

The cubic nonlinearity |A|2A is taken element-wise and B = diag(1, 0, 1). We choose n = 100,
T = 5 and the initial data

(A0)ij = exp
(

−
(i− 60)2

100
−

(j − 50)2

100

)

+ exp
(

−
(i− 50)2

100
−

(j − 40)2

100

)

.

In this example, we aim at computing approximations of rank up to 30. To ensure that A0 has
rank at least 30 (making sure it satisfies the assumptions of PRK), we perturb A0 by taking the
full SVD of A0 and setting the singular values 3, 4, . . . , 32 to 10−9.

First, we set α = 0.3. The singular values of the reference solution at t = T , as well as the
approximation errors by Rand Euler and Rand RK4 with different ranks are shown in Figure
4. We again observe that Rand Euler achieves first-order convergence in time, while Rand RK4
achieves fourth-order convergence in time until it reaches the level of low-rank approximation
error. In this example, the maximum error of both methods is also very close to the empirical
mean, deviating by less than twice the mean.
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Figure 4: Non-linear Schrödinger equation with α = 0.3. Singular values of the reference solution
at time T = 5 together with the approximation errors of the numerical approximation obtained
by Rand Euler and Rand RK4 for different ranks and time-step sizes.

Now we fix the rank to r = 30 and compare Rand RK with PRK and projector splitting for
α = 3 × 10−4 and α = 0.3 in Figure 5. For small α = 3 × 10−4, we observe that PRK 1 and
PRK 2 exhibit the correct order of convergence. Again, one observes that the initially visible
fourth-order convergence of PRK 4 quickly deteriorates as h decreases. For α = 0.3, we see that
the order of PRK 2 decreases to 1 when h is small, and PRK 4 only shows first-order convergence
as well. Again, this is likely due to the large tangential projection error ‖Pr(Yi)F (Yi)−F (Yi)‖F ;
see Table 2. On the other hand, all the Randomized RK methods exhibit robust convergence of
the expected order. Surprisingly and for reasons unclear to us, the projector splitting method
provides very accurate results for this example.

α 3e-4 3e-1

average ‖F (Yi)− Pr(Yi)F (Yi)‖F 3.0145 × 10−8 2.9315 × 10−5

max ‖F (Yi)− Pr(Yi)F (Yi)‖F 5.8059 × 10−4 0.5806

Table 2: Average and maximum ‖F (Yi) − Pr(Yi)F (Yi)‖F for the approximation Yi at the ith
time step of PRK 2 with h = 2.5× 10−4.

4.3 Discrete Schrödinger equation in imaginary time

In this example, we aim at approximating the solution of the discrete Schrödinger equation in
imaginary time from [8]:

Ȧ(t) = −H[A(t)], A(0) = A0, t ∈ [0, 0.5] (28)

where

H[A(t)] = −
1

2
(DA(t) +A(t)D) + VcosA(t)Vcos ∈ R

n×n,

21



10
-3

10
-2

time-step

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||
 Y

re
f  -

 Y
 |
| F

alpha=3e-4   

Randomized RK

Rand RK4

Rand RK2

Rand Euler

slope 1

slope 2

slope 4

Best approximation

10
-3

10
-2

time-step

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||
 Y

re
f  -

 Y
 |
| F

alpha=3e-4

Projected RK & Projector splitting

Proj Split

PRK 4

PRK 2

PRK 1

slope 1

slope 2

slope 4

Best approximation

10
-3

10
-2

time-step

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||
 Y

re
f  -

 Y
 |
| F

alpha=3e-1   

Randomzied RK

Rand RK4

Rand RK2

Rand Euler

slope 1

slope 2

slope 4

Best approximation

10
-3

10
-2

time-step

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

||
 Y

re
f  -

 Y
 |
| F

alpha=3e-1

Projected RK & Projector splitting

Proj Split

PRK 4

PRK 2

PRK 1

slope 1

slope 2

Best approximation

Figure 5: Non-linear Schrödinger equation with α = 3× 10−4 and α = 3× 10−1. Comparison of
absolute approximation errors measured in Frobenius norm for different integrators for rank-30.

D = diag(−1, 2,−1) is the discrete 1D Laplace, and Vcos is the diagonal matrix with diagonal
entries 1 − cos(2jπ/n) for j = −n/2, . . . , n/2 − 1. We choose n = 512 and an initial value A0

that is randomly generated with prescribed singular values 10−i, i = 1, . . . , 512. In Figure 6,
we first plot the singular values of the reference solution at T = 0.5. Next, we plot the error of
Rand Euler, Rand RK2, and Rand RK4 with a rank of 40. The final plot shows the error of
Rand RK4 with various ranks. Once again, we observe the expected order of convergence until
it reaches the level of low-rank approximation error.

4.4 Allen-Cahn equation

Following [5, Section 5.3], we consider the matrix differential equation arising from discretizeing
the Allen-Cahn equation via finite differences:

Ȧ = ǫ(LA+AL) +A−A3,

with initial data

(A0)ij =
[e− tan2(xi) + e− tan2(yj)] sin(xi) sin(yj)

1 + e|csc(−xi/2)| + e|csc(−yi/2)|
,

where A3 is to be understood element-wise and (xi, yj) ∈ [0, 2π]2, with i, j = 1, . . . , 256, are
uniform discretization points. The matrix L is the one-dimensional finite-difference stencil,
ǫ = 0.01 and the time interval is [0, 10]. For this example, we apply Rand RK4 with rank
2 and time step size h = 10−3. We plot the contours of the results at t = 1, 3, 5, 7, 10 in
Figure 7. Additionally, we calculate the difference between the reference solution and normalize
the difference by the Frobenius norm of the reference solution. We observe that Rand RK 4
accurately captures the contours despite using a very low rank.
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Figure 6: Discrete Schrödinger equation in imaginary time. The singular values of the reference
solution at time T = 0.5, and rank-40 approximation errors for Rand Euler, Rand RK2 and
Rand RK4. Also, the approximation errors for different ranks using Rand RK4.

5 Conclusions

In this work, we have proposed randomized low-rank Runge-Kutta methods. The analysis and
numerical experiments clearly demonstrate the great potential of these methods to constitute
an attractive alternative to existing dynamical low-rank methods. To fully realize this potential,
further work is needed. On the practical side, rank adaptivity, parallelization, the preservation
of quantities, and the combination with splitting/exponential integrators belong to the aspects
that need to be studied in order to match the progress on dynamical low-rank methods achieved
during the last decade. Also, the use of structured random matrices for efficiently addressing
matrix differential equations with nonlinearities merits exploration. On the theoretical side, our
analysis has raised a number of open questions. In particular, it would be important to develop
a more direct approach for establishing the full order of randomized low-rank Runge-Kutta
methods.

A Appendix: Proof of Theorem 5

The proof of Theorem 5 follows from modifying the proof of [14, Theorem 6] appropriately. We
first provide an bound that relates the stages of the standard RK method (13) with the ones of
the randomized RK method (14).

Theorem 11. With the assumptions stated in Theorem 3, suppose that γ1 ≤ γ2 ≤ · · · ≤ γs
are the stage orders of the explicit RK method (13) and denote γ̃j = min(γj , γ2 + 1). Then the
differences between the stages Z̃j of the standard RK method (13) with Ai = Yi and the stages
Zj of the randomized RK method (14) are bounded by

‖Zj − Z̃j‖Lq ≤

{

0 if j = 1, 2,

C(h2ǫ+ hγ2+2) if j = 3, 4, . . . , s,
(29)
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Figure 7: Allen-Cahn equation.The contour of the reference solution and the rank-2 approxima-
tion obtained by Rand RK4 with h = 10−3.

‖F (Nj(Zj))− F (Z̃j)‖Lq ≤

{

0 if j = 1,

C(hǫ+ hγ̃j+1) if j = 2, 3, . . . , s,
(30)

for any 0 ≤ h ≤ h0, where q = min{p, ℓ} and the constant C depends only on L, T , CN , h0, s
and maxij |aij |.

Proof. For j = 1, we have Yi = Z1 = Z̃1 and, therefore,

F (N1(Z1)) = F (Z1) = F (Z̃1),

holds almost surely, because Yi has rank at most r. For j ≥ 2, we proceed by induction and
assume that the statement of the theorem holds up to j − 1. Using the induction hypothesis
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for (30), we obtain that

‖Zj − Z̃j‖Lq ≤ h

j−1
∑

l=1

|ajl| · ‖F (Nl(Zl))− F (Z̃l)‖Lq

≤

{

0 if j = 2,

CACh(shǫ+ hγ̃2+1 + . . .+ hγ̃j−1+1) if j = 3, . . . , s.

Using the assumption on the ordering of the stage orders and γ̃2 = γ2, it follows that

‖Zj − Z̃j‖Lq ≤

{

0 if j = 1, 2,

CZh(hǫ+ hγ2+1) if j = 3, . . . , s,
(31)

which shows (29). To establish (30), we note that Zj is independent from Ωj and Ψj , which
allows us to use the law of total expectation and Theorem 2 to conclude that

‖F (Nj(Zj))− F (Z̃j)‖Lq ≤ L‖Nj(Zj)− Z̃j‖Lq

≤ L
((

E{E[‖Nj(Zj)− Zj‖
q
F |Zj ]}

)1/q
+ ‖Zj − Z̃j‖Lq

)

≤ L
(

CN‖[[Zj ]]r − Zj‖Lq + ‖Zj − Z̃j‖Lq

)

≤ LCN ‖[[Z̃j ]]r − Zj‖Lq + L‖Zj − Z̃j‖Lq

≤ LCN ‖[[Z̃j ]]r − Z̃j‖F + L(CN + 1)‖Zj − Z̃j‖Lq .

While the second term of the last inequality is bounded by (31), we bound the first term by

‖[[Z̃j ]]r − Z̃j‖F ≤ ‖[[φ
cjh
F (Yi)]]r − φ

cjh
F (Yi)‖F + ‖φ

cjh
F (Yi)− Z̃j‖F

≤ ‖[[φ
cjh
F (Yi)]]r − φ

cjh
F (Yi)‖F + CLh

γj+1

≤ (CM ǫh+CLh
γj+1),

where we recall that the coefficient cj was used in the definition (18) of stage order. In summary,
we have

‖F (Nj(Zj))− F (Z̃j)‖Lq ≤ LCN (CM ǫh+ CLh
γj+1) + L(CN + 1)CZh(hǫ + hγ2+1)

≤ CFh(ǫ+ hγj + hγ2+1).

This concludes the proof of (30) using the definition of γ̃j .

Proof of Theorem 3. By the triangular inequality, the local error satisfies

‖Yi+1 − φh
F (Yi)‖Lq ≤ ‖Yi+1 − Ỹi+1‖Lq + ‖Ỹi+1 − φh

F (Yi)‖Lq , (32)

where Ỹi+1 = Yi+h
∑s

j=1 bjF (Z̃j). Using that Ωs+1 and Ψs+1 are independent of Ω1, . . .Ωs and
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Ψ1, . . .Ψs, Theorem 2 yields

‖Yi+1 − Ỹi+1‖Lq =
∥
∥
∥Ns+1

(

Yi + h
s∑

j=1

bjF (Nj(Zj))
)

− Ỹi+1

∥
∥
∥
Lq

≤CN

∥
∥
∥

[[

Yi + h

s∑

j=1

bjF (Nj(Zj))
]]

r
− Yi − h

s∑

j=1

bjF (Nj(Zj))
∥
∥
∥
Lq

+
∥
∥
∥h

s∑

j=1

bj(F (Nj(Zj))− F (Z̃j))
∥
∥
∥
Lq

≤CN

∥
∥
∥[[Ỹi+1]]r − Yi − h

s∑

j=1

bjF (Nj(Zj))
∥
∥
∥
Lq

+
∥
∥
∥h

s∑

j=1

bj(F (Nj(Zj))− F (Z̃j))
∥
∥
∥
Lq

≤CN ‖[[Ỹi+1]]r − Ỹi+1‖Lq + (1 +CN )
∥
∥
∥h

s∑

j=1

bj(F (Nj(Zj))− F (Z̃j))
∥
∥
∥
Lq

≤C
(

ǫh+ hτ+1 + h

s∑

j=1

|bj |‖(F (Nj(Zj))− F (Z̃j))‖Lq

)

.

Hence, the local error is bounded by

‖Yi+1 − φh
F (Yi)‖Lq ≤ ‖Yi+1 − Ỹi+1‖Lq + C1h

τ+1 ≤ Ch(ǫ+ hγ + hτ ).

This is turned into a bound on the global error using as in the proof of Theorem 3, which yields
the bounds on the Lq norm claimed in the statement of Theorem 5. The tail bound is obtained
using Markov’s inequality; see Corollary 4.

References

[1] Daniel Appelö and Yingda Cheng. Robust implicit Adaptive Low Rank Time-Stepping
Methods for Matrix Differential Equations. arXiv preprint arXiv:2402.05347, 2024.

[2] Hessam Babaee, Minseok Choi, Themistoklis P. Sapsis, and George Em Karniadakis. A
robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse
with application to stochastic flow problems. J. Comput. Phys., 344:303–319, 2017.

[3] Oleg Balabanov, Matthias Beaupère, Laura Grigori, and Victor Lederer. Block subsampled
randomized Hadamard transform for Nyström approximation on distributed architectures.
In Proceedings of the 40th International Conference on Machine Learning, 2023.
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[17] Daniel Kressner and Lana Perǐsa. Recompression of Hadamard products of tensors in
Tucker format. SIAM J. Sci. Comput., 39(5):A1879–A1902, 2017.

[18] Jonas Kusch. Second-order robust parallel integrators for dynamical low-rank approxima-
tion. arXiv preprint arXiv:2403.02834, 2024.

[19] Christian Lubich and Ivan V. Oseledets. A projector-splitting integrator for dynamical
low-rank approximation. BIT, 54(1):171–188, 2014.

[20] Yuji Nakatsukasa. Fast and stable randomized low-rank matrix approximation. arXiv
preprint arXiv:2009.11392, 2020.
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